TEXT: Chemistry – Matter and Change , McGraw-Hill, 2005.

1 st 9 WEEKS (8/26-10/25)						
SOL	Enabling Objective: Description	Text	Recommended Activities (hyperlinks, ESS, CHEMLABS on R drive)	# days to teach		
2 nd day of se	2 nd day of school PRE-TEST (for Teacher Evaluation & School Improvement: short 1 day test of essential skills)					
CH.1ei	Chemistry & Matter The student will investigate and understand that experiments in which variables are measured, analyzed, and evaluated produce observations and verifiable data. Key concepts include e) accurate recording, organization, and analysis of data through repeated trials; i) construction and defense of a scientific viewpoint	1-1, 1-2, 1-3, 1-4	 LAB: *Qualitative Observations of a Chemical Reaction [R drive] *Scientific Method and the 'Phlogiston Theory'- reading for content [R drive] APPLETS/VIDEOS: Shakashiri Battery Demonstration Video (3 min) Scientific Vs. Nonscientific Writing Practice 	6 days		
CH.1d-i	Data Analysis The student will investigate and understand that experiments in which variables are measured, analyzed, and evaluated produce observations and verifiable data. Key concepts include d) manipulation of multiple variables, using repeated trials; e) accurate recording, organization, and analysis of data through repeated trials; f) mathematical and procedural error analysis; g) mathematical manipulations including SI units, scientific	2-1, 2-2, 2-3, 2-4	 LABS: *Quantitative Observations of a Chemical Reaction [R drive] *Density of a Metal w/ Graph and Error Analysis [R drive] H/W: Dim. Analysis – practice and problem sheet w/ unit conversions and 	7 days		

	notation, linear equations, graphing, ratio and proportion, significant digits, and dimensional analysis; h) use of appropriate technology including computers, graphing calculators, and probeware, for gathering data, communicating results, and using simulations to model concepts; i) construction and defense of a scientific viewpoint		'word' problems APPLETS/VIDEOS: Sig Fig Practice Sig Fig Practice Quiz
	Changes & Properties of Matter		
CH.1a-c	The student will investigate and understand that experiments in which variables are measured, analyzed, and evaluated produce observations and verifiable data. Key concepts include a) designated laboratory techniques; b) safe use of chemicals and equipment; c) proper response to emergency situations The student will investigate and understand that the placement	3-1, 3-2, 3-3	LAB: *Physical and Chemical Changes LABS: *Chromatography of markers - Science Stuff: Paper Chromatography *Dissolving techniques for analysis of cold packs - <u>University</u>
CH.2h	of elements on the periodic table is a function of their atomic structure. The periodic table is a tool used for the investigations of h) chemical and physical properties;		of Manitoba CRYSTAL Links H/W: Dim. Analysis – practice and problem sheet w/ 'word' problems - % and concentrations APPLETS/VIDEOS: <u>Classification of Matter Applet</u> <u>Conservation of Mass Demos</u>
	Structure of an Atom		
CH.2a-ci	The student will investigate and understand that the placement of elements on the periodic table is a function of their atomic structure. The periodic table is a tool used for the investigations	4-1, 4-2, 4-3	LAB: *Simulation –Isotopes of 'Pennium' [R drive]

H/W: Practice atomic structure w/ chart for elements # 1-36

11 days

8 days

of

a) average atomic mass, mass number, and atomic number;

b) isotopes, half lives, and radioactive decay;

CH.6a	c) mass and charge characteristics of subatomic particles i) historical and quantum models The student will investigate and understand how basic chemical properties relate to organic chemistry and biochemistry. Key concepts include a) unique properties of carbon that allow multi-carbon compounds; and		Video Series: The Periodic Table for Students – Atomic Structure and the Periodic Table [purchase] APPLETS/VIDEOS: Atomic History Webquest Powers of Ten Video (9 min) Cathode Ray Video (1 min) Gold Foil Video (1 min) Types of Radiation Animation (1 min) World of Chemistry Atom Video (30 min) Subatomic Particle Game Atom Builder Puzzle Atom Builder with Charge and Symbols	
	Electrons in Atoms		Create and Measure Isotopes Applet	
CH.2gi	The student will investigate and understand that the placement of elements on the periodic table is a function of their atomic structure. The periodic table is a tool used for the investigations of	5-1, 5-2, 5-3	LAB: *Flame Tests - Download: Chem fax flinn scientific at Marks Web of Books and Manuals	8 days
	g) electron configurations, valence electrons, and oxidation numbers; i) historical and quantum models.		H/W: Practice electron notations w/ chart for elements # 1-20	
			APPLETS/VIDEOS:	
			EM Spectrum Applet Bohr vs Quantum Model Animation Orbits	

(teacher.education2020.com, go to course

and Spectra Virtual Lab (e2020)

structure, EOC Chemistry, models of atom, view lab) <u>Heisenberg Soccer Ball Animation</u> (1 min) <u>Bohr vs Quantum Model Animation</u> <u>Electron Configuration Ladder</u> <u>Electron Configuration Visualizer</u>

Flex days/Remediation

Reflection notes:

3 days

2 nd 9 WEEKS (10/29-1/17)				
SOL	Enabling Objective: Description	Text	Recommended Activities (e.g., applets, ESS, labs)	# days to teach
				45 days
CH.2d-f	Periodic Table & Periodic Law The student will investigate and understand that the placement of elements on the periodic table is a function of their atomic structure. The periodic table is a tool used for the investigations of d) families or groups; e) periods; f) trends including atomic radii, electronegativity, shielding effect, and ionization energy;	6-1, 6-2, 6-3	 H/W: Provide a periodic table for students; students label parts of a blank chart. LAB: *Activity Series for Metals [R drive] APPLETS/VIDEOS: Periodic Table Trends Atomic Radius Visualizer Mendeleev Organization Activity World of Chemistry Periodic Table Video (30 min) Video Periodic Table 	5 days

Elements

CH.2d-h	The student will investigate and understand that the placement	7-1,
	of elements on the periodic table is a function of their atomic	7-2,
	structure. The periodic table is a tool used for the investigations	7-3,
	of	7-4
	d) families or groups;	
	e) periods;	
	h) chemical and physical properties;	

APPLETS/VIDEOS:

Element Song Element Discovery Date Applet Abundance and Uses Periodic Table

Ionic Compounds

CH.3ad	The student will investigate and understand how conservation	8-1,
	of energy and matter is expressed in chemical formulas and	8-2,
	balanced equations. Key concepts include	8-3,
	a) nomenclature;	8-4
	d) bonding types;	0.

LAB: *Make ionic 'notecards' w/charges and match ions to make neutral compounds [R drive]

9 days

H/W: Memorize polyatomic ion; practice names and formulas for ionic compounds

APPLETS/VIDEOS:

Ionic Charge Balancer Ionic Bonding Applet (e2020) (teacher.education2020.com, go to course structure, EOC Chemistry, Formation and Nature of Ionic Bonds Lab)

Covalent Donuing

CH.3ad	The student will investigate and understand how conservation	9-1,
	of energy and matter is expressed in chemical formulas and	9-2,
	balanced equations. Key concepts include	9-3,
	a) nomenclature;	9-4,
	d) bonding types;	9-5
СН. 6а	The student will investigate and understand how basic chemical properties relate to organic chemistry and biochemistry. Key concepts include	

a) unique properties of carbon that allow multi-carbon compounds

LAB: *Models of Covalent Molecules (use molecular model kits) [R drive]

10 days

H/W: Practice names and formulas for

covalent compounds

APPLETS/VIDEOS:

World of Chemistry Bonding Video (30 min) Conductivity Tester Applet Covalent Bonding Applet (e2020) (in nature of

covalent bonding lab) Bond Polarity Visualizer Applet VSEPR Animation VSEPR Applet (Visualize and Build)

The student will investigate and understand how conservation of energy and matter is expressed in chemical formulas and balanced equations. Key concepts include b) balancing chemical equations; c) writing chemical formulas; e) reaction types;	10-1, 10-2, 10-3, 10-4	LABS: *Writing Equations and Predicting Products [R drive] *Double Replacement Reactions [R drive]	12 days
The student will investigate and understand how basic chemical properties relate to organic chemistry and biochemistry. Key concepts include a) unique properties of carbon that allow multi-carbon compounds; and b) uses in pharmaceuticals and genetics, petrochemicals, plastics, and food.		H/W: Practice balancing and determining types of reactions APPLETS/VIDEOS: Shakashiri Reaction Videos Interactive Balancing Tutorial (table method) Visual Balancer Visual Balancing Game Activity Series Applet	

Cumulative Semester Exams ----

(recommend multiple choice questions adapted from previous SOLs & short answer, diagramming, & problem-solving items)

Chemical Reactions

Flex days/Remediation

Reflection notes:

CH.3bce

CH. 6b

2 days

1 day

	3rd 9 WEEKS (1/22-3/28)				
SOL	Enabling Objective: Description	Text	Recommended Activities (e.g., applets, ESS, labs)	# days to teach 48 days	
	Mole Conversions				
CH.4a	The student will investigate and understand that chemical quantities are based on molar relationships. Key concepts include a) Avogadro's principle and molar volume; b) stoichiometric relationships;	11-1, 11-2, 11-3, 11-4, 11-5	LABS: * % Oxygen in Potassium Chlorate *% Sugar in Bubble Gum [all on R drive] *Formula for a Hydrate [TEXT: Chap. 11]	13 days	
			H/W: Practice mole/mass/particle conversions, theoretical % composition and empirical formula calculations		
			APPLETS/VIDEOS:		
			Formula of A Hydrate Animation Stoichiometry Flip Tile Applet (e2020) (in Arithmetic of Equations Lab)		
	Stoichiometry				
CH.4b	The student will investigate and understand that chemical quantities are based on molar relationships. Key concepts include b) stoichiometric relationships;	12-1, 12-2, 12-3, 12-4	LABS: *Recovery of Copper to determine a mole ratio for balanced equation *Recovery of a Salt from a	13 days	

neutralization reaction [all on R drive] *S'more Stoichiometry Lab

H/W: Practice using balanced equation to predict moles of product

APPLETS/VIDEOS:

Stoichiometry Tutorial and Problems Three Step Stoichiometry Tutorial Limiting Reactant Applet (e2020) (Limiting Reagent and Percent Yield Lab) Limiting Reactant Applet (sandwiches and reactions)

States of Matter

CH.5b, d	The student will investigate and understand that the phases of	13-1,
	matter are explained by kinetic theory and forces of attraction	13-2,
	between particles. Key concepts include	13-3,
	b) partial pressure and gas laws;	13-4,
	d) phase changes;	13-5

LABS: *Heating Curve for Water

11 days

w/labeled graph*Surface Tension of Water and various Solutions[all on R drive]

APPLETS/VIDEOS:

States of Matter Animation Phase Change Plot Applet Vapor Pressure and Temperature Graph Phase Diagram Applet

Gases

CH.5a, b	The student will investigate and understand that the phases of			
	matter are explained by kinetic theory and forces of attraction	14-2,		
	between particles. Key concepts include	14-3,		
	a) pressure, temperature, and volume;	14-4,		
	b) partial pressure and gas laws;	14-5,		

LABS: * Boyle's Law 'By the Book' * Molar Volume of a Gas [all on R drive]
DEMOS: * Avogadro's, Boyle's, Charles', Gay-Lussac's Law
[See gas law demos.doc on R drive] * 'Crushed Can' [Soda Can Gas Lab/Demo and R drive]

H/W: Practice calculations with Boyle's, Charles' and Ideal Gas Laws

APPLETS/VIDEOS:

Other Gas Law Graph and Simulation Applets Dalton's Law Applet Ideal Gas Applet Can Crush Animation

Flex days/Remediation

Reflection notes:

14-6

7 days

4th 9 WEEKS (4/1-6/6)					
SOL	Enabling Objective: Description	Text	Recommended Activities (e.g., applets, ESS, labs)	# days to teach	
	•			45 uays	
CH.5a, b	Gases The student will investigate and understand that the phases of matter are explained by kinetic theory and forces of attraction between particles. Key concepts include a) pressure, temperature, and volume; b) partial pressure and gas laws; b) partial pressure and gas laws;	14-1, 14-2, 14-3, 14-4, 14-5, 14-6	 LABS: * Boyle's Law 'By the Book' * Molar Volume of a Gas [all on R drive] DEMOS: * Avogadro's, Boyle's, Charles', Gay-Lussac's Law [See gas law demos.doc on R drive] * 'Crushed Can' [Soda Can Gas Lab/Demo and R drive] H/W: Practice calculations with Boyle's, Charles' and Ideal Gas Laws DPLETS/VIDEOS: Daton's Law Graph and Simulation Applets Dalton's Law Applet Ideal Gas Applet Can Crush Animation 	6 days	

Solutions

CH.4c	The student will investigate and understand that chemical quantities are based on molar relationships. Key concepts include c) solution concentrations;	15-1, 15-2, 15-3, 15-4,
CH.5c, g	The student will investigate and understand that the phases of matter are explained by kinetic theory and forces of attraction between particles. Key concepts include c) vapor pressure; g) colligative properties.	15-5

LAB: *Solubility Curves [R drive]

H/W: Practice calculations using molarity, molality, and mole fraction concentrations

APPLETS/VIDEOS:

Solvation Animation (1 min) Supersaturation Clip (1 min) Solubility Rap (3.5 min) Changing Concentration Applet Heats of Solution Applet Colligative Properties Applet (Boiling and Freezing Point)

Energy & Chemical Change

CH.3e, f	The student will investigate and understand how conservation	16-1
	of energy and matter is expressed in chemical formulas and	16-2
	balanced equations. Key concepts include	16-3
	e) reaction types;	16-4
	f) reaction rates, kinetics, and equilibrium	16-5
CH. 5 e, f	The student will investigate and understand that the phases of matter are explained by kinetic theory and forces of attraction	
	between particles. Key concepts include	
	e) molar heats of fusion and vaporization;	
	f) specific heat capacity;	

LABS: *Heat of Solution	Mini
*Heat of Fusion [R drive]	Topic = ~3 days
APPLETS/VIDEOS:	
World of Chemistry Energy Video (30 min)	
Elephant Toothpaste Demo	
Simple Heat Capacity Applet (could use by itself or	

with further links)

6 days

Heat capacity of Copper AppletVirtual Calorimetry Lab Rateof Reaction Song CollisionTheory Applet Surface AreaRate AnimationConcentration Rate AnimationTemperature Rate AnimationReaction Rate Applet (e2020) (Rates of Reaction Lab)T and Solubility Virtual LabReversible Reaction AppletPhase Change Equilibrium Applet (e2020) (phase eqlab. Also fpd)Le Chatlier Cobalt Problem Lab

Acids & Bases

CH.3e	The student will investigate and understand how conservation of energy and matter is expressed in chemical formulas and balanced equations. Key concepts include e) reaction types	19-1, 19-2, 19-3, 19-4,
CH.4d	The student will investigate and understand that chemical quantities are based on molar relationships. Key concepts include d) acid/base theory; strong electrolytes, weak electrolytes, and nonelectrolytes; dissociation and ionization; pH and pOH; and the titration process.	19-5

LABS: *Test various common and lab acids and bases with paper and liquid acid/base indicators 3-4 days

H/W: Practice calculations for [H+], pH, [OH-] and pOH

APPLETS/VIDEOS:

Universal Indicator Rainbow Demo Simple Indicator Lab Weak Acid Titration Virtual Lab Virtual Acid/Base Titration Advanced Titration Virtual Lab POST-TEST (for Teacher Evaluation & School Improvement—use same test as PRE-TEST)

SOL REVIEW (BEFORE any SOL testing) Note: Within the review period, teachers may do mini lessons covering energy, enthalpy, equilibrium, kinetics, and organic chemistry to break up the basic review and prepare students for those topics on the SOL.

Acids & Bases

CH.3e	The student will investigate and understand how conservation of energy and matter is expressed in chemical formulas and balanced equations. Key concepts include e) reaction types	19-1, 19-2, 19-3, 19-4,
CH.4d	The student will investigate and understand that chemical quantities are based on molar relationships. Key concepts include d) acid/base theory; strong electrolytes, weak electrolytes, and nonelectrolytes; dissociation and ionization; pH and pOH; and the titration process.	19-5
	Final exam	

Reflection notes:

LABS:	* Lest various common and lab	4-5 days
	acids and bases with paper and	
	liquid acid/base indicators	
H/W:	Practice calculations for [H+], pH,	

H/W: Practice calculations for [H+], pl [OH-] and pOH

APPLETS/VIDEOS:

Universal Indicator Rainbow Demo Simple Indicator Lab Weak Acid Titration Virtual Lab Virtual Acid/Base Titration Advanced Titration Virtual Lab

2 days

13-16

1 day

days

Reporting Categories are the same as well as the number of items within each category. However, some NEW content has been added or OLD content has been moved. See the changes in the Blueprint summary table and the SOL crosswalk below.

	Blueprint Summary	2003			2010
Reporting Category	SOLs (significant changes are in bold print). See Crosswalk,	#items	% of test	#items	% of test
	Brief Notes below, & Curriculum framework for details				
Scientific Investigation	CH.1a-i	10	20%	10	20%
Atomic Structure & Periodic	СН. 2а-I, СН.6а	8	16%	8	16%
Relationships	New Content = CH.6a				
Chemical Formulas & Reactions	CH.3a-f, CH.6b	16	32%	16	32%
	New content = CH.6b				
Molar Relationships	CH. 4a-d	8	16%	8	16%
Phases of Matter & Kinetic	CH. 5a-g	8	16%	8	16%
Molecular Theory					

Brief List of SOL Changes: Science Crosswalk between 2003 and 2010 standards

-CH.1i, Redundant content was removed (the nature of science).

-**CH.1**j, New content was added (the use of current applications to reinforce chemistry concepts).

-CH.2e, Part of the content (series) was removed

-CH.3f, Related content was moved from CH.4f (chemical equilibrium) and added to the existing bullet.

-old CH.4c, Content (partial pressure) was moved to CH.5b.

-old CH.4d, Content (gas laws) was moved to CH.5b.

-old CH.4f, Content (chemical equilibrium) was moved to CH.3f.

-CH.5b, Content was moved from CH.4c (partial pressure) and CH.4d (gas laws).

-CH.6a-b, New content was added.

CH.6 The student will investigate and understand how basic chemical properties relate to organic chemistry and biochemistry. Key concepts include

a) unique properties of carbon that allow multi-carbon compounds; and

b) uses in pharmaceuticals and genetics, petrochemicals, plastics, and food.

Removed 2003 Chemistry SOL Content:

Minor content in CH.2e was removed (series).

Chemistry SOL Course Content Overview

1 st 9 weeks=	44 days
Chamister 9 Matter	C dava
Chemistry & Watter	6 days
Data Analysis	7 days
Changes & Properties of Matter	11 days
Structure of an Atom	8 days
Electrons in Atoms	8 days
2 nd 9 weeks=	45 days
Periodic Table & Periodic Law	8 days
Elements	6 days
Ionic Compounds	8 days
Covalent Bonding	10 days
Chemical Reactions	12 days
3 rd 9 weeks=	48 days
Mole Conversions	13 days
Stoichiometry	13 days
States of Matter	11 days
Gases	7 days
4 th 9 weeks=	43 days
Gases	6 days
Solutions	7-8 days
Energy & Chemical Change	6-7 days
Acids & Bases	8 days
	•